B033414(033)

B. Tech. (Fourth Semester) Examination, April-May 2022

(Scheme: AICTE)

(IT Engg. Branch)

OPERATING SYSTEM

(BT3033)

Time Allowed: Three hours

Maximum Marks: 100

Minimum Marks: 35

Note: Attempt all questions. Part (a) carries 4 marks and is compulsory. Attempt any two parts from part (b), (c) and (d) carrying 8 marks each.

- 1. (a) Describe various functions of Operating System.
 - (b) Explain Dual mode protection and memory protection with the help of diagram.

4

(c) Explain concept of Multiprogramming and real time operating system.

8

8

8

- (d) Draw and explain system structures.
- **2.** (a) What is pre-emptive and non-pre-emptive scheduling? Also give their advantages and disadvantages.
 - (b) Consider the set of processes with the length of CPU burst time given in milliseconds.

Process	Arrival time	CPU Burst Time	
P1	0.000	4	
P2	2.002	7	
Р3	6.002	2	
P4	8.004	5	

Give the Gantt chart and calculate average turnaround time and average waiting time for FCFS, and SRTF scheduling algorithm.

- (c) Explain various types of Scheduler and also define Dispatcher. (with diagram).
- (d) What is producer consumer problem? Give semaphore solution for this problem.

- **3.** (a) Define Deadlock. A computer system has 6 tape drives with *n* processes competing for them. Each process needs 3 tape drives. The maximum value of *n* for which the system is guaranteed to be deadlock free.
 - (b) Assume that there are 5 processes, P0 through P4 and 4 types of resources. At T0 we have the following system state:

	Allocation				Max				Available			
	A	В	С	D	A	В	С	D	A	В	С	D
P_0	0	1	1	0	0	2	1	0	1	5	2	0
P_1	1	2	3	1	1	6	5	2	75,45	1 48	at 6	9
P ₂	1	3	6	5	2	3	6	6	NATE OF	inail	9.	
P_3	0	6	3	2	0	6	5	2	IR	0.1.	(401 III)	
P_4	0	0	1	4	0	6	5	6				

Answer the following using Banker's algorithm:

- (i) What is the content of matrix need?
- (ii) Is the system in a safe state?
- (iii) If a request from process P1 arrives (0, 2, 1, 0) can be safely granted immediately?

r		- 1
	7	

	(c	Explain Deadlock prevention schemes.	8
	(d) What are the four conditions of deadlock? Explain in detail.	8
4.	(a)	What is internal and external fragmentation? Explain.	4
	(b)	Explain paging with TLB.	8
		Consider a single level paging scheme with a TLB. Assume no page faul occurs. It takes 20 ns to search the TLB and 100 ns to access the physical memory. If TLB hit ratio is 80%, what will be the effective access time?	
	(c)	How many page fault occur for FIFO, LRU and optimal page replacement algorithm with 3 frames	
		for the following reference string. 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0 1	8
	(d)	Explain partition allocation algorithms. Give five memory partitions of 100 Kb, 500 Kb, 200 Kb, 300 Kb, 600 Kb (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of 212 Kb, 417 Kb, 112 Kb and 426 Kb (in order)? Which algorithm makes the most	8
		efficient use of memory?	

B033414(033)

[5]

5.	(a)	Explain Input Output buffering.	4
	(b)	Explain various File Allocation methods.	8
	(c)	Suppose that the head of a moving disk with 200 tracks numbered 0 to 199, is currently serving a request at track 53 the disk queue has the requests:	
		98, 183, 37, 122, 14, 124, 65, 67	
		What is the total no. of head movements needs to satisfy these requests for following disk scheduling algorithms: FCFS, SCAN, SSTF.	8
	(d)	Draw and explain Disk structure. Also define Seek time and Latency time.	8